

Original Research Article

: 17/07/2025

: 26/09/2025

ECG AS AN EARLY INDICATOR OF CARDIAC CHANGES IN SMOKERS: A COMPARATIVE STUDY WITH NON- SMOKERS

Deepa VK¹, Leena P², Manju Dominic³, A George Koshy⁴

¹Assistant Professor, Department of Physiology, Government Medical College, Kollam, Kerala, India.

²Professor, Department of Physiology, SUT Academy of Medical Sciences, Vattappara, Thiruvananthapuram, Kerala, India.

³Associate Professor, Department of Physiology, Government Medical College, Thiruvananthapuram, Kerala, India.

⁴Senior consultant, Department of Cardiology, Cosmopolitan hospital, Thiruvananthapuram, Kerala, India.

ABSTRACT

Background: Tobacco is a well-documented major societal problem throughout the world. Numerous studies have flagged cigarette smoking as the main risk factor in causing cardiovascular disease. The analysis of ECG patterns in apparently healthy male smokers and non-smokers was the primary objective of this study. Materials and Methods: The study compared the ECG changes in smokers and non-smokers among volunteers from the staff and attendants of patients attending the outpatient department of Government Medical College Thiruvananthapuram. The history of smoking and medical complaints along with BMI, pulse rate, blood pressure, and ECG of each participant were recorded. Result: Smokers demonstrated a statistically significant increase in pulse rate and blood pressure. In ECG recordings, PR and QTc intervals were significantly prolonged. Although QT, ST and TP intervals were also prolonged, these changes were not statistically significant. Conclusion: The study concludes that smoking, even at a young age, results in amplified cardiac responses and measurable alterations in ECG waveforms when compared to non-smokers.

Received

Keywords: Cardiovascular disease; Cigarette; ECG; Smoking; Tobacco.

Received in revised form: 05/09/2025

Corresponding Author: **Dr. Deepa VK**,

Email: drvkdeepa@gmail.com

DOI: 10.47009/jamp.2025.7.5.176

Source of Support: Nil, Conflict of Interest: None declared

Int J Acad Med Pharm 2025; 7 (5); 927-930

INTRODUCTION

Cigarette smoking, one of the commonest forms of tobacco consumption, is the most important cause of preventable deaths globally. Nicotine and several other psychoactive substances contained in tobacco cause physical and psychological dependence.

Tobacco use is a major health and social problem worldwide.^[1] It is a very potent and prevalent addictive habit, influencing the behaviour of human beings for greater than four centuries. Tobacco is the second most important cause of death in the world,^[2] killing up to six million people every year.^[3] About five million of these deaths are attributed to direct tobacco use. Another 600,000 deaths are attributable to non-smokers being exposed to passive smoke. Most of these deaths are in low and middle-income countries.^[4]

In India, a nationwide survey in the year 2008 found 184 million users of tobacco out of which 112 million smoked tobacco in one form or the other. The Indian Council of Medical Research (ICMR) has found that about 800,000 people are killed each year, which

amounts to nearly 2200 deaths each day from tobacco related diseases.^[5]

One of the strongest contributors in the causation of cardiovascular disease, stroke, sudden death, peripheral artery disease, aortic aneurysms and sudden death is cigarette smoking. Nicotine can cause sudden coronary death by various mechanisms including ventricular arrhythmias.^[6,7]

One of the methods used to assess these changes is an electrocardiogram (ECG), which is a graphical recording of the electrical potentials generated by the heart. It is a simple, non-invasive, and cheap procedure. Recording of an ECG is one of the easiest methods of assessing cardiovascular dysfunction.

The awareness regarding adverse effects of tobacco use is largely limited to its role in causing malignancies. Therefore, there is a need for information on other tobacco related diseases also, especially cardiovascular diseases.

MATERIALS AND METHODS

A cross-sectional analytical study was conducted at Government Medical College, Thiruvananthapuram,

during 2017. The study population included volunteers and attendants of patients attending the outpatient department.

Male cigarette smokers of aged 25 to 40 years were recruited as the study group and age matched non-smokers as the control group. Subjects with Diabetes, Hypertension, Stroke, Ischemic Heart Disease, Renal diseases, and, those on medications which could affect the ECG were excluded.

Sample size was determined to be 44 for each group. After obtaining informed consent, the subjects were chosen consecutively till the required sample size was achieved. Information was collected using a pre tested, semi structured proforma. Smoking history was recorded by asking about how long had the subject been smoking and how many cigarettes were smoked in one day.

Physical examination with measurement of height, weight, pulse rate and BP recording was done. A 12 lead ECG was recorded from all cases and controls. An ECG machine manufactured by the BPL company with model number 6108T was used for all recordings. Various ECG parameters- P wave, T wave, PR interval, QT interval, QR interval, ST interval, TP interval and RR interval were measured

and the mean electrical axis was calculated. These parameters were further evaluated.

Data were compiled in Microsoft excel and analysed using SPSS Version 20. A 'p' value less than 0.05 was taken as significant.

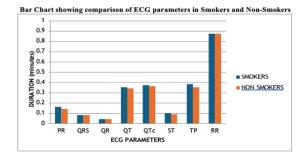
RESULTS

Both groups showed comparable mean age profile, with the smoker group at 34.18 years and the non-smoker group at 34.08 years. The mean BMI of smokers was less when compared to non-smokers. In smokers, cigarettes smoked per day varied from 6 to 20 cigarettes, with an average of 11.88 cigarettes. Though the mean duration of smoking was 11.89 years in smokers, the mean pack years was only about 7.19±3.57. Pack years was calculated by multiplying the number of cigarette packs smoked per day by the years a person had smoked.

The mean pulse rate and the mean systolic and diastolic BP was higher in smokers when compared to the non-smoker group. The observed increase in these parameters was statistically significant.

Table 1: Comparison of Average Baseline Parameters of Smokers and Non-Smokers

Parameters	Smokers	Non smokers	P value
Pulse rate (per minute)	74.9	69	0.018
BMI	23.5	24.2	0.232
Systolic BP (mm Hg)	134.8	125.1	0.000
Diastolic BP (mmHg)	89.6	84.09	0.000


ECG parameters: The mean PR interval and QTc were prolonged in smokers when compared to non-smokers and this was statistically significant. An increase in the mean QT, ST and TP interval was observed in smokers but the difference was not statistically significant. The mean QRS, QR and RR interval duration were similar between the two

groups. Though differences in P wave morphology, ST segment duration and T wave abnormality were seen in few smokers, these were found not to be associated with smoking. The mean QRS axis in the smoker group was observed to be lower compared to the non-smoker group.

Table 2: Comparison of ECG Parameters of Smokers and Non-Smokers

	Duration in Smokers (in	Duration Iin Non-Smokers	Significance (p value)
	milliseconds)	(in milliseconds)	
PR interval	0.16	0.14	0.00
QRS	0.08	0.08	0.86
QR	0.04	0.04	0.119
QT	0.35	0.34	0.08
QTc	0.37	0.36	0.025
ST	0.1	0.09	0.199
TP	0.38	0.35	0.344
RR	0.87	0.87	0.975

Values highlighted in bold shows statistical significance (p<0.05)

DISCUSSION

Smoking is an important cause of cardiovascular morbidity and mortality. In the present study, selected ECG parameters among non-smokers were compared with that of smokers. Several studies investigating similar parameters have reported varied results in the past.

The present study showed an increase in pulse rate in smokers when compared to non-smokers and this was

statistically significant (p= 0.018). This agreed with most of the studies.[8-11] In smokers, Nicotine appears to induce increased sympathetic discharge with stimulation of the adrenal medulla leading to increased secretion of adrenomedullary hormones epinephrine and thereby increasing levels.[12] The norepinephrine release catecholamines is due to the binding of Nicotine to the nicotinic cholinergic gate on the cation channels found in receptors throughout the body. This results in a positive chronotropic effect with an increase in resting heart rate. Smoking causes an increase in sympathetic activity which can disturb the balance of the autonomic nervous system.^[13]

Both systolic and diastolic blood pressures were increased in smokers when compared to nonsmokers. Similar observations were found in several other studies.^[8,9,14] The systolic blood pressure increase is thought to be caused by increased contractility of heart in response to sympathetic discharge in smokers. This increase in contractility increases the volume of blood pumped, which increases cardiac output and thus increases the systolic blood pressure. The surge in sympathetic stimulation due to Nicotine causes constriction of blood vessels. Smoking also injures blood vessel walls and speeds up the process of atherosclerosis. All these factors cause an increase in the peripheral resistance and hence increases the diastolic pressure. Various cardiac rhythm disorders like sinus tachycardia, transient sinus arrest, sinus bradycardia, atrial fibrillation, sinoatrial block, AV block, and ventricular tachyarrhythmia are caused Nicotine. [15-17] The mechanism by which Nicotine acts includes stimulation and subsequent blockade of autonomic ganglia, release of epinephrine from the adrenal medulla, stimulation of the carotid body chemoreceptors and aortic baroreceptors, and direct action on the central nervous system. Nicotine facilitates conduction block and re-entry and in addition, increases the vulnerability to ventricular fibrillation.^[18] Nicotine is also a potent inhibitor of the cardiac A type potassium channels, contributing to changes in the electrophysiology of the heart which can induce arrhythmias.

In a large number of studies, PR interval was found shortened. [14,19,20] A study by Vandana et al,[9] reported a prolonged mean PR interval in smokers but the difference was not statistically significant. This could be due to the difference in selection of the population group or to the duration of smoking.

Prolonged PR interval (PR >0.20) is because of delay in conduction at the AV node, atrium, His Purkinje system or at multiple sites. Usually in the presence of coronary artery disease, prolonged PR interval is associated with an adverse outcome. But if structural heart disease or other conduction abnormalities are absent, a prolonged PR interval is considered benign. QTc was increased in smokers when compared to the non-smoker group in our study. QTc prolongation was also seen in studies conducted by Venkatesh et al,^[21] Mallikarjuna et al,^[11] and Ajith et al.^[22]

Prolonged QTc could be due to autonomic dysfunction in these subjects.^[23]

Prolonged QT can increase the threshold of arrhythmias and QTc prolongation may double the sudden cardiac death risk. [24] In studies conducted by Aravind et al, [25] and Pradeep et al, [26] there was no difference in QTc duration between smokers and non-smokers. QTc reflects the time taken for depolarization and subsequent repolarization of the ventricular myocardium. Thomakos et al, [27] found that QTc prolongation was associated with an increased risk of unexpected death in diabetics. They also found that QTc could be used to predict cardiac death in newly diagnosed diabetic patients.

The mean QRS axis was decreased in smokers but the difference was not statistically significant. Venkatesh et al,^[21] and Mallikarjuna et al,^[11] also reported decreased QRS axis in smokers in comparison to non-smokers. Chatterjee et al,^[28] found that QRS and P axes differed significantly between smokers and non-smokers. These findings indicated that aging affects ECG wave patterns, and that this aging effect was modified by long-term smoking.

CONCLUSION

Our findings indicate that smokers are more likely to suffer from cardiovascular disease. This study demonstrates that cardiac electrical activity is significantly altered by smoking, even in young individuals.

Smoking induced changes in heart manifest as significant variation in ECG waveforms in smokers when compared with non-smokers.

In long term smoking, mortality is either due to coronary artery disease or an electrophysiological disturbance leading to arrhythmia. Cigarette smoking is associated with measurable changes in cardiac electrophysiology, even in younger populations. In a country like India where the smoking habit is high, prevention through health education and behavioural modification may bring down the mortality and morbidity due to cardiovascular disease to a great extent. ECG is a simple and inexpensive tool to assess smoking induced damage. Performing an ECG, and the findings found thereof can be a powerful sensitizer for the individual to quit the smoking habit. It is also useful in categorizing them as 'at risk' and intervene early to prevent further cardiovascular events.

REFERENCES

- Bartecchi CE, Mackenzie TD, Schrier RW. The Human Costs of Tobacco Use. N Engl J Med. 1994;330:907-12.
- World Health Organization. The world health report 2002: reducing risks, promoting healthy life. World Health Organization; 2002.
- Ministry of Health and Family Welfare, Government of India; International Institute for Population Sciences (IIPS), Mumbai. Global adult tobacco survey India (GATS India) 2009.

- World Health Organization. Global status report on noncommunicable diseases 2010.
- Majumdar S. India: Smoke signals. Available from: https://www.boloji.com/articles/ 2680/. Access date 26-07-2025
- Junichi Minami, Toshihiko Ishimitsu, Hiroaki Matsuoka "Effects of Smoking Cessation on Blood Pressure and Heart Rate Variability in Habitual Smokers". Hypertension. 1999;33:586-590.
- Garden T, Kannel WB, Mcgee D et al. Death and coronary attacks in men after giving up cigarette smoking: a report from the Framingham study. Lancet. 1974;2:1345-8.
- Gupta BK, Kaushik A, Panwar RB, Chaddha VS, Nayak KC, Singh VB, Gupta R, Raja S: Cardiovascular risk factors in tobacco-chewers: a controlled study. Journal of the Association of Physicians of India. 2007,55:27-31.
- Vandana V Chiddarwar, Chiddarwar VA, Jain Jinendra M, Singhania Snita S. Int J Pharm Biomed Sci. 2012;3(4):220– 23
- Devi, M. R. R., Arvind, T., & Kumar, P. S. ECG Changes in Smokers and Non Smokers-A Comparative Study. Journal of Clinical and Diagnostic Research. 2013;7(5):824–826.
- Mallikarjuna V, Prashanthbabu G, Arunkumar S, Prashanth KS A Study of ECG Changes in Healthy Young Smokers Compared to Non-Smokers. Int j basic med sci. 2014. https://www.ijbms.in.
- 12. Hering D, Somers VK, Kara T. Sympathetic neural responses to smoking are age dependent. J Hypertens. 2006;24:691-5.
- Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64:1740-50.
- Nayak UB, George JM, Pradeep TV, Naveen N. Serum Lipid Profile and Electrocardiographic Changes in Young smokers. International Journal of Public Health Science. 2013;Mar;2(1):33-8.
- Benowitz N. Drug therapy: pharmacologic aspects of cigarette smoking and nicotine addiction. N Engl J Med. 1988;319:1318-30.
- Escobedo LG, Zack MM. Comparison of sudden death and non-sudden coronary death in the United States. Circulation. 1996;93:2033-6.

- Stewart PM, Catterall JR. Chronic nicotine ingestion and atrial fibrillation. Br Heart J. 1985;54:222-3.
- Yashima M, Ohara T, Cao JM, Kim YH, Fishbein MC, Mandel WJ, et al. Nicotine increases ventricular vulnerability to fibrillation in hearts with healed myocardial infarction. Am J Physiol Heart Circ Physiol. 2000; Jun; 278(6):H2124-33.
- Baden L, Weiss ST, Thomas HE Jr, Sparrow D. smoking status and the electrocardiogram; a cross sectional & longitudinal study. Arc environ health. 1982;37:365-9.
- Khan IS, Rahman MA and Amin R. Study of ECG Changes in Apparently Healthy Adult Male Smokers. Dinajpur Med Col J. 2011;Jan;4(1):7-14.
- Venkatesh G and Swamy RM. A Study of Electrocardiographic changes in smokers compared to normal human beings. Biomedical Research. 2010;21(4):389-392.
- Ajith S, Basavaraju K. To study the association of QTc interval changes in smokers. Res J Phar Bio and Chem Sci. 2015;6(4):1380-2.
- Edwards R. The Problem Of Tobacco Smoking. BMJ. 2004;328:217-9.
- 24. Okin PM, Devereux RB, Howard BV, Fabsitz RR, Lee ET, Welty TK. Assessment of QT interval and QT dispersion for prediction of all cause and cardiovascular mortality in American Indians: The Strong Heart Study. Circulation. 2000;Jan 4-11;101(1):61-6.
- Aravind T, Devi MRR, Sai Kumar P. IOSR Journal of Dental and Medical Sciences. 2012;2(3):26-27.
- Pradeep V. Benjarge, Pratibha R Deshmukh. A Comparative Study of QTc interval Changes in Smokers and Non-smokers. Online International Interdisciplinary Research Journal. 2014;Sept-Oct 2014;4(5):117-118.
- 27. Thomakos P, Liatis S, Kalopita S, Vlahodimitris I, Stathi C, Katsilambros N, Tentolouris N, Makrilakis K: Cigarette Smoking Is Associated with Prolongation of the QTc Interval Duration in Patients with Type 2 Diabetes Mellitus. Int J Endocrinol. 2013:329189.
- 28. Chatterjee S, Kumar S, Dey SK, Chatterjee P. Chronic effect of smoking on the electrocardiogram. Jpn Heart J. 1989;Nov;30(6):827-39.